Direct and indirect evidence for massive differences in jellyfish biomass between the Pacific and Atlantic: implications for fisheries bycatch?

Martin Lilley^{1,2}

NATURAL

S.E. Beggs³, T.K. Doyle⁴, V.J. Hobson¹, K.H.P. Stromberg⁵, G.C. Hays¹

¹ Swansea University, UK

- ² MIO, Aix-Marseille Université, France
- ³ Agri-food & Biosciences Institute, N.Ireland
- ⁴ Coastal and Marine Research Centre, Cork, Ireland

⁵ Swedish Meteorological and Hydrological Institute, Sweden

Introduction

Historical jellyfish data: Incidental observations and bycatch Few specific long-term datasets

Jellyfish blooms are attracting widespread attention Public interaction – many sightings But are blooms actually anything new?

Few reviews of long-term quantitative data Current projects collating data and assessing qualitative data

Part 1 – Gelatinous biomass assessment Sampling method?

Numerical data more widely available

but assessment of size absent

Biomass allows assessment

of predation potential and prey availability but one individual or many?

Ideally both would be recorded simultaneously

Biomass trends

Global database estimated from the epipelagic.

Low sample sizes excluded

Exponential decrease with depth. $r^2 = 0.543$, p < 0.001

Highest biomass: enclosed lakes

Lowest biomass: mid ocean

Lilley et al. (2011) Marine Biology 158: 2429-2436.

Species composition

Proportional composition of taxa biomass

Species composition of groupings not consistent with depth. e.g. Semaeostomes

Life-history dictates depth of observations

Ctenophores predominantly *Mnemiopsis*.

n = 11, 13, 14, 6, 8, 6 study sites

Lilley et al. (2011) Marine Biology 158: 2429-2436.

Location of Biomass estimates

58 data sets/sites

Notable gaps e.g. central oceanic Additional data may be available if mined from the sources of overview databases. Part 2 – Applying biomass estimates at an ocean basin scale and their effects on predators.

Known predators of gelatinous zooplankton

Leatherback turtles: An indicator of gelatinous blooms?

Endangered species Wide distribution, independent populations Deep diver Feeding migrations Bi-/Tri-annual nesting

Migrations studied through satellite tracking

Atlantic vs Pacific An applied case

OPEN CACCESS Freely available online

Tracking study (Bailey *et al.* 2012) Migration differences

Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (*Dermochelys coriacea*), Linked to Foraging Success and Population Status

Helen Bailey^{1,2*}, Sabrina Fossette³, Steven J. Bograd², George L. Shillinger^{4,5}, Alan M. Swithenbank⁵, Jean-Yves Georges^{6,7}, Philippe Gaspar⁸, K. H. Patrik Strömberg⁹, Frank V. Paladino¹⁰, James R. Spotila¹¹, Barbara A. Block⁵, Graeme C. Hays³

Behaviours as a proxy for foraging

What is the evidence for a difference between the Atlantic and Pacific?

Atlantic vs Pacific Population differences

Nesting interval – Pacific > Atlantic Clutch Size - Pacific < Atlantic Body size - Pacific < Atlantic

Reduced resource availability for Pacific leatherbacks

Generic issues: Predation/culling/bycatch Result: Current decline in Pacific population size Current decline in Pacific population size Current decline in Pacific population size

Is there a difference between Atlantic & Pacific gelatinous biomass?

Open water sites only (n=16/ocean)

Samples within top 200m

Few truly oceanic samples, typically coastal or continental shelf

Median Biomass – Atlantic > Pacific

Median Biomass – Atlantic > Pacific Maximum Biomass – Atlantic > Pacific

Open water sites Most productive site (mean biomass) Atlantic 15:1g Pacific

Best sample biomass Atlantic 219:1g Pacific N=16 per ocean

Median Biomass – Atlantic > Pacific Maximum Biomass – Atlantic > Pacific

Biomass caveats: Spatial variability Energy density Coastal research emphasis

Does turtle behaviour overlap with prey availability?

Bimodal frequency between travelling and foraging

Percentage frequency graph of daily distance travelled

Can identify: 1) Foraging 2) Migration 3) Compare rate of travel between individuals or locations

Bimodal frequency between travelling and foraging

Unimodal frequency in the Pacific – More migration, less foraging

Deeper dives Dives peak around the productive gyre region

250

Gyre deeper Shallow dives No peak in diving behaviour = less gelatinous prey? Or out of reach?

The exception:

- Coastal migration path
- •Data similar to Atlantic individuals
- Larger female
- Larger clutch sizes
- Productive upwelling region
- More productive for turtles?

Highest recorded East Pacific jellyfish biomass D

Atlantic vs Pacific Conclusions

Biomass estimates would support hypothesis of a reduced food resource in the Pacific Broadscale evidence for prey trends (Brotz et al 2012) - SE Pacific – gelatinous decline - Atlantic – stable/increasing

Foraging response?

Turtles may no longer forage in best jellyfish regions because of bycatch (Mismatch productivity & foraging locations)

Turtle behaviour may be useful as an indicator of productive regions for gelatinous biomass

One last thought

Questions? – <u>lilley@obs-vlfr.fr</u> Poster S7-7 / S7-8

What role do smaller gelatinous species, such as these small 4g *Linuche*, play in the diet of turtle species?

(Fossette et al 2012, Biology Letters **8**:351-4.)

Thanks to: PhD supervisor Graeme Hays (Swansea University)

Fabien Lombard (UPMC/LOV) for his continued support and funding for this visit.

