Spatio-temporal model for mariculture suitability of Japanese scallop (*Mizuhopecten yessoensis*) in Funka and Mutsu Bays, Japan

*Christopher Mulanda <u>Aura^{1,2}</u>, Sei-Ichi Saitoh¹,

Yang Liu¹ and Toru Hirawake¹ ¹Laboratory of Marine Environment and Resource Sensing, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1, Minato, Hakodate, Hokkaido, 041-8611, Japan. ²Kenya Marine and Fisheries Research Institute, P.O. Box 81651-80100, Mombasa, Kenya.

*Email: <u>auramulanda@yahoo.com</u>

W1: Identifying critical multiple stressors of North Pacific marine Ecosystems and

indicators to assess their impacts

図館マリン バイオクラスター hakodate-marine-bio.com

Introduction: Global & local Scallop Production

- Mainly in China and Japan (FAO 2009)!
- Over 40% of scallop production in Japan is from Aquaculture (FAO, 2009).
- It is cultivated in Japan because of its good food quality & high productivity (Ito, 1991).

Pacific Ocean

Sea of Okhotsk Sea of Japan HOKKAIDO Funka Bay

Mutsu Bay

Introduction

Introduction

- World aquaculture vulnerable to adverse impacts of natural, socioeconomic, environmental & technological conditions (FAO, 2009).
- E.g. Marine cage culture in Chile, Oyster farming in France & Shrimp farming in Mozambique had high mortality-loss of production (FAO, 2009).
- Funka & Mutsu are semi-enclosed bays, in same ecoregion, similar types of currents, hanging scallop mariculture facing competition from other ventures & in rapid growth.

Objective

To develop & assess the spatio-temporal models using coastal ecosystem indicators and stressors for scallop mariculture suitability in Funka & Mutsu Bays' ecoregion.

Materials and Methods

Study Area

≤60 m delineation

Suitability Model

Parameter	Type of Data	Resolution	Source of Data						
Chlorophyll-a	Satellite	1 km	MODIS/Aqua						
Sea surface temperature	Satellite	1 km	MODIS/Aqua						
Secchi disk depth (*SDD)	Satellite	1 km	Kd490 (MODIS/Aqua)						
Bathymetry	Digital	150 m	JODC						
Social-infrastructure/constraints	Satellite	10 m	ALOS AVNIR-2 2011						
Scallop production	Analog/digital		Funka = MARINENET HOKKAIDO Website Mutsu = Aomori Prefecture website						
*SDD =1.04 x K _d (490) ^{-0.82}									
[Chen et al., 2007.]									
r _{ij} = attribute transformed to spatial score (1-8) Most preferred alternative is maximum <i>V</i> (<i>xi</i>) value									

Results and Discussion: Monthly Model Example 2009 monthly model Jan. Feb. Mar. Apr. 140*201 14175 FEB Funka JAN **Funka Funka** MAR Funka APR 42-30'N 42°20'N 140°50'E 141°E 141°10'E Mutsu Mutsu FEB MAR Mutsu JAN APR 41°20'N 41°10'N 41°N-40°50'N

Suitability scores

Results and Discussion: Monthly Model Example

2009 monthly model

∧ ↓ 3 ⋈ 5 6 1 8

Biophysical and Socio-infrastructure Sub-models

Final models and Validation

Model

Period with greatest impact on scallop growth?

Area (Km ²)	Funka	Mutsu		
Potential area	1024	856		
Constraints	265	250		

Scallop growth variation (Apr-Nov)?

Mutsu score

Indicator/Stressor/Model performance

Model/parameter % of potential area													
Score	Model	SST		Chl-a		SSD		Depth		Soc-inf		Overall	
		F	М	F	М	F	М	F	М	F	М	F	М
1	2008	8.7	8.9	0.1	0.9	73.3	75.7	2.1	1.7	4.7	3.5	0.0	0
	2009	6.7	7.1	0.0	1.4	57.4	66.6	2.1	1.7	4.7	3.5	0.0	0
	2010	15.8	16.3	0.1	1.7	.548	71.5	2.1	1.7	4.7	3.5	0.0	0
	2011	12.4	12.0	0.1	0.0	61.5	59.8	2.1	1.7	4.7	3.5	0.0	0
2	2008	4.5	4.8	0.3	0.7	14.4	13.7	2.0	1.4	3.6	1.9	0.5	0
	2009	3.6	3.8	0.1	0.4	22.7	23.4	2.0	1.4	3.6	1.9	0.4	0
	2010	14.8	16.1	0.2	0.3	25.4	24.6	2.0	1.4	3.6	1.9	1.1	0
	2011	5.4	6.0	0.2	0.2	24.2	27.5	2.0	1.4	3.6	1.9	0.1	0
3	2008	16.4	16.3	11.6	10.5	5.3	7.7	2.2	1.1	5.4	4.2	10.7	11.5
	2009	6.5	7.2	1.2	1.5	9.4	12.6	2.2	1.1	5.4	4.2	6.3	6.9
	2010	26.3	28.6	8.5	9.1	8.6	9.8	2.2	1.1	5.4	4.2	12.7	14.5
	2011	5.4	5.6	2.8	5.4	6.3	<mark>8.</mark> 9	2.2	1.1	5.4	4.2	6.1	9.4
4	2008	27.2	28.1	24.9	21.6	2.4	6.4	2.3	3.2	8.0	<mark>6.6</mark>	18.1	18.1
	2009	16.6	17.0	16.8	15.7	4.1	9.8	2.3	3.2	8.0	6.6	14.7	16.7
	2010	25.2	26.0	17.9	17.4	3.8	7.8	2.3	3.2	8.0	6.6	16.6	17.6
	2011	15.0	14.8	14.0	13.9	2.7	5.9	2.3	3.2	8.0	6.6	15.3	17.1

Indicator/Stressor/Model performance

			Model/	parame	ter % of	potentia	al area						
Score	Model	SST		Chl-a		SSD		Depth		Soc-inf		Overall	
		F	М	F	М	F	М	F	М	F	М	F	М
5	2008	14.4	14.0	9.6	8.1	1.5	3.2	2.5	1.5	7.2	6.2	21.9	18.3
	2009	30.1	23.0	8.3	8.9	2.2	1.4	2.5	1.5	7.2	6.2	19.6	17.5
	2010	9.6	6.6	4.5	4.1	2.5	3.7	2.5	1.5	7.2	6.2	20.1	19.3
	2011	34.6	22.1	13.4	14.2	1.4	1.8	2.5	1.5	7.2	6.2	26.1	15.0
6	2008	15.7	13.0	31.8	21.5	1.1	1.0	2.8	1.8	9.5	12.8	39	37.5
	2009	15.4	13.6	47.0	39.1	1.4	0.9	2.8	1.8	9.5	12.8	42.6	40.5
	2010	5.4	4.4	19.9	43.5	1.5	2.2	2.8	1.8	9.5	12.8	34.3	27.1
	2011	16.0	15.0	41.2	30.3	0.9	2.1	2.8	1.8	9.5	12.8	39.4	41.9
7	2008	11.8	10.6	6.1	5.3	0.6	1.0	2.8	3.2	8.7	10.9	34.6	12.7
	2009	20.0	17.3	7.5	6.5	0.9	0.7	2.8	3.2	8.7	10.9	41.9	15.1
	2010	2.5	1.5	4.5	3.3	1.0	2.0	2.8	3.2	8.7	10.9	26.9	12.1
	2011	10.4	7.4	10.2	9.7	0.8	1.0	2.8	3.2	8.7	10.9	39.8	14.1
8	2008	1.3	1.1	14.6	13.7	1.4	0.8	83.3	81.8	53.1	55.7	10.5	0.1
	2009	1.1	1.9	11.7	12.6	1.9	1.5	83.3	81.8	53.1	55.7	12.4	0.1
	2010	0.4	0.6	7.2	6.7	2.4	3.1	83.3	81.8	53.1	55.7	8.6	0.0
	2011	0.8	0.5	17.6	16.3	2.1	1.7	83.3	81.8	53.1	55.7	15.7	0.1

Biophysical indicator: Chlorophyll-*a*

Biophysical indicator: SDD

Biophysical indicator: SST

Further validation

Further validation

Conclusions

- Funka Bay high score of 7 & Mutsu Bay high score of 6.
- Spatio-temporal variations in suitability scores & indicator/stressor concentrations within & between both bays.
- Constraints (stressors) limited scallop potential area.
- Elevated SST in August & September (>20° C in both bays)-scallop mortality in Mutsu Bay in 2010-stressor
- Chl-*a* (>5 mg m⁻³ in Funka Bay) in 2010 model stressor.
- Low SDD in high scallop production sites-a stressor .

Conclusions

• Model displayed a high degree of reliability due to consistency with existing scallop mariculture.

 GIS-based MCE-ascertain degree of stressors & indicators in coastal ecosystems & delineation of scallop potential sites-in Ecosystem Approach to Aquaculture (EAA) & Integrated Coastal Zone Management (ICZM).

• Further addition of environmental impact (EC) & currents (velocity) indicators would strengthen the models further.

*Christopher Mulanda <u>Aura^{1,2}</u>, Sei-Ichi Saitoh¹, Yang Liu¹ and Toru Hirawake¹

¹Laboratory of Marine Environment and Resource Sensing, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1, Minato, Hakodate, Hokkaido, 041-8611, Japan. ²Kenya Marine and Fisheries Research Institute, P.O. Box 81651-80100, Mombasa, Kenya. *Email: <u>auramulanda@yahoo.com</u>

