2013 PICES Annual meeting

Variation in assimilation efficiencies of dominant *Neocalanus* and *Eucalanus* copepods in the subarctic Pacific: consequences for population structure models

Neocalanus cristatus C5

N. flemingeri C5

mm

Eucalanus bungii C5

Yoshiyuki <u>Abe</u>, Masafumi Natsuike, Kohei Matsuno, Takeshi Terui, Atsushi Yamaguchi, Michio J. Kishi and Ichiro Imai *Graduate School of Fisheries Science, Hokkaido University*

Introduction

Summer zooplankton community in the subarctic Pacific

> *Neocalanus* spp. *Eucalanus* spp.

predominant and form 85-90% of the total zooplankton biomass (Vinogradov, 1970)

play an important role in energy transfers to higher trophic organisms (Nemoto, 1963; Hunt et al., 1998; Beamish et al., 1999; Ikeda et al., 2008)

Assimilation efficiency of copepods

Assimilation efficiency is an essential parameter required to estimate the energy transfer to higher trophic levels in marine ecosystems

Introduction

little information is available for assimilation eficiency of large oceanic copepods (*Neocalanus* and *Eucalanus* species) dominated in the subarctic Pacific

Even in marine ecosystem models such as NEMURO, a constant value (70%) is applied for the copepod assimilation efficiency (Kishi et al., 2007; Terui and Kishi, 2008; Terui et al., 2012).

Objectiveof this study

Assimilation efficiencies of three large oceanic copepods (*N. cristatus, N. flemingeri* and *E. bungii*), were measured by applying the Ratio method applying eight phytoplankton species (diatoms, dinoflagellates and a raphidophycean) as food

By applying the observed assimilation efficiency of *N. cristatus*, the effects of changes in the assimilation efficiency on copepod population structure were evaluated using the population model (Lagrangian ensemble model; LEM).

Material and Methods

30° |

130° E 140° E 150° E 160° E 170° E 180° E

Live *N. cristatus, N. fleminger* and *E. bungii* were sorted

- Seawater was collected from 20 m depth using Niskin bottles, filtered through a GF/F filter and used in the subsequent experiments.
- Live specimens were transferred into a 1-L bottle filled with filtered seawater (FSW)
- Up to 100 specimens of each species were kept at 2°C and then carried to the land laboratory

Material and Methods

Phytoplankton

To obtain sympatric phytoplankton species, 5 ml of unfiltered seawater was added to a flask containing 300 ml of modified SWM-3 medium

 \rightarrow Three diatoms were isolated.

(Chaetoceros sp., Ditylum brightwellii and Thalassiosira nordenskioeldii)

Incubate condition • • modified SWM–3 medium, $15^{\circ}C$, 14 h L:10 h D light/dark photocycle, illumination 100–120 µmol photons m⁻² s⁻¹

Material and Methods: Experiments of assimilation efficiency

• Ratio Method (Conover 1966a, b)

$$U'(\%) = \left(\frac{(F'-E')}{(1-E') \times (F')} \right) \times 100$$

U': Assimilation efficiency

F': the organic fraction of the food

E': the organic fraction of the faecal pellets

Results and Discussion : N. cristatus

Results and Discussion : *N. flemingeri* and *E. bungii*

N. flemingeri

varied with the phytoplankton species

E. bungii : 34%~65%

Results and Discussion: Relationship between *AE* and Ash contents of phytoplankton 100 100 N. cristatus C5 N. flemingeri C5 75 75 ∇_{\diamondsuit} • Among the phytoplankton species, the highest ash content was observed for diatoms • Diatom cell walls are made with silica = inorganic material • Although silica is ingested by copepods, 79-90% of the silica is egested as faecal pellets (Tande and Slagstad, 1985; Conover et al., 1986; Cowie and Hedges, 1996) \rightarrow copepods can not assimilate silica atio Thalassiosira nordenskioeldii Chaetoceros sp. the highly significant negative relationship between copepod assimilation efficiency and ash content of phytoplankton A common trend for the three copepod Y = 152.60 - 1.79 Xspecies was that the assimilation efficiencies 25 (*r*²=0.79, *p*<0.001) had a significant negative correlation with the ash contents of the food phytoplankton 0 20 60 80 40 0 Ash contents of phytoplankton(X: %)

Results and Discussion

N. cristatus • • Changes in assimilation efficiency with the phytoplankton cell size were not detected

N. flemingeri and *E. bungii* • • Negative correlation between assimilation efficiency and phytoplankton cell size was detected (*p* < 0.001)

We tested the effects of changes in assimilation efficiency by applying the LEM for *N. cristatus* Terui et al. (2012)

- <u>66%</u> • *N. cristatus* could maintain the population
- 45% • N. cristatus could not maintain its population
 - 70% ••139 days were required for individuals to reach C5 (solid)
 - 66% • 150 days were required for same hatch date individuals

Summary

Assimilation efficiencies of dominant *Neocalanus* and *Eucalanus* copepods in the subarctic Pacific

 had a significant negative correlation with the ash contents of the food phytoplankton

 varied with the phytoplankton species and the ash contents of the food phytoplankton

Marine ecosystem model

 Variations in assimilation efficiency should be incorporated into marine ecosystem models in the future

- Copepod assimilation efficiency is highly correlated with the inorganic content of food
- Assimilation efficiency in the model should be estimated using parameters based on the composition of the food phytoplankton taxa

Thank you very much for your kind attention!

By Oshoro-Maru The 216th North Pacific Cruise