Can we predict synchronous production dynamics? Applications to somatic growth.

Christine Stawitz¹, Timothy Essington², Trevor Branch², Melissa Haltuch³, Anne Hollowed⁴, Nate Mantua⁵, Paul Spencer⁴

¹ QERM, University of Washington; ²School of Aquatic and Fishery Sciences, University of Washington; ³NOAA-Fisheries, Northwest Fisheries Science Center ⁴NOAA-Fisheries, Alaska Fisheries Science Center; ⁵NOAA-Fisheries, Southwest Fisheries Science Center

Central idea

Synchronous production dynamics of stocks within and across ecosystems are due to shared sensitivity to common environmental drivers

Approach

Growth

- Quantify growth variation and trends
- 2. Evaluate synchrony within and between ecosystems
- Build environmental covariates into the model

Recruitment

Overview

- Background
- Growth hypotheses & models
- Simulation testing
- Applications to Eastern Bering Sea and Aleutian Islands (BSAI) and Gulf of Alaska (GOA) data
- Summary

State-space model

Process model: Random walk with drift

Process model: Random walk with drift

+ Initial size effect

Process model: Simulation testing

Process model: DIC weights

Chosen -> True v	Constant	Annual Growth Effect	Cohort Growth Effect	Initial Size Effect
Constant	28%	18%	36%	18%
Annual Growth Effect	0%	96%	4%	0%
Cohort Growth Effect	2%	8%	82%	8%
Initial Size Effect	18.12%	22.32%	9.54%	50%

Observation model: covariates

- Potential variables to include:
 - Depth
 - Latitude
 - Age method
 - Date

Annual growth effect model chosen for BSAI Pollock

Years

Consistent model selection across BSAI

Annual growth effect model chosen for GOA Halibut

Summary

- Estimation framework working!
- Year effect model chosen for BSAI stocks
- Age method is the main covariate influencing length-at-age

- Next steps:
 - Apply to West Coast data
 - Incorporate environmental covariates

Acknowledgments

• NOAA NMFS, IPHC

Quantitative Ecology & Resource Management University of Washington

Fisheries and the Environment (FATE)

Contact: cstawitz@uw.edu