Radionuclide Transport from Fukushima to Eastern North Pacific

J.N. Smith¹, R.M. Brown², M. Robert², B. Williams² and R. Nelson¹

¹Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, N.S. ²Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC

> 2013 PICES Annual Meeting Nanaimo, BC October 15, 2013

On March 11, 2011 an earthquake-triggered tsunami produced catastrophic damage to the Fukushima nuclear power reactors.

<complex-block>

Explosions occurred in secondary containment; Chernobyl had no real secondary containment.

Atmospheric transport of radioactivity plume was directed farther northeastward compared to more eastward transport of water borne plume.

Radioactive Seawater Impact Map (update: March 2012)

Long-term trend of ¹³⁷Cs in surface water in the western North Pacific Ocean: pre-Fukushima

Aoyama, M., Hirose, K., TheScientificWorldJOURNAL, 4, 200-215, 2004 and update

¹³⁷Cs Budget Estimates

a: Aoyama, M., Hirose, K., Igarashi, Y., J. ENVIRON. MONITOR., 8, 431-438, 2006

b: Aoyama unpublished data estimated 3-D distribution of ¹³⁷Cs

c: Tsumune et al., 2011, Rypina et al., 2012, Charette et al., 2012

d: Chino et al., 2011, Morino et al, 2011, ISRN 2011, Aoyama et al. in prep.

e: Aoyama et al. in prep.

f: IAEA, Proceeding of an International Conference, Vienna, 8-12 Apr. 1996

g: Buesseler, 2012

Canadian Ocean Monitoring Program

Seawater samples (20-60 l) collected at Stas. P4 and P26 in 2011, 2012 and 2013 during CCGS Tully missions on Line P. Seawater passed through KCFC resin cartridges at sea, shipped to BIO and analysed for ¹³⁴Cs and ¹³⁷Cs using Ge hyperpure gamma ray detectors. Samples also collected in 2012 at several arctic stations to evaluate Pacific Water inflow of radioactivity to the Beaufort Sea.

Canadian Ocean Monitoring Program

Seawater samples (20-60 l) collected at Stas. P4 and P26 in 2011, 2012 and 2013 during CCGS Tully missions on Line P. Seawater passed through KCFC resin cartridges at sea, shipped to BIO and analysed for ¹³⁴Cs and ¹³⁷Cs using Ge hyperpure gamma ray detectors. Samples also collected in 2012 at several arctic stations to evaluate Pacific Water inflow of radioactivity to the Beaufort Sea.

Why Measure ¹³⁷Cs in Arctic?

Pacific water contaminated with Fukushima ¹³⁷Cs flows through Bering Strait and mixes with underlying Atlantic water labeled with ¹³⁷Cs from Sellafield nuclear fuel reprocessing plant and Chernobyl accident.

Why Measure ¹³⁷Cs in Arctic?

Surface outflow of Pacific water through Archipelago and Fram Strait can potentially contaminate Atlantic water.

Circulation of ¹³⁷Cs in Arctic Ocean

¹³⁷Cs is transported northward into the Arctic Ocean to the North Pole (Sta. 4) and Canada Basin (Sta. 1). Red water depth profiles (inset) show arrival of peak inputs.

¹³⁷Cs comes from Sellafield: a nuclear fuel reprocessing plant and the only global source for radioactivity comparable To Fukushima.

Liquid disharge

pipelines

THORP

EARP

Magnox

reprocessing

WAGR

¹³⁷Cs is transported northward into the Arctic Ocean to the North Pole (Sta. 4) and Canada Basin (Sta. 1). Red water depth profiles show arrival of peak (inset) inputs. Comparison with input function used to estimate circulation time scales, eg. 10 y to North Pole.

CSGS Tully Cruise – Line P; June 2011 (Chief scientist – M. Robert)

June, 2011 Tully Mission

¹³⁷Cs profiles in 2011 were similar at both Stas. P4 and P26 and represent the background signal from weapons fallout: ¹³⁴Cs was below detection limit of 0.1 mBq/l.

June, 2012 Tully Mission

Significantly, ¹³⁴Cs was detected in two samples in the upper 50 m At Sta. P26 showing that Fukushima Cs was present.

June, 2012 Tully Mission

Decay correction of the ¹³⁴Cs ($t_{1/2} = 2 y$) to the time of the accident and knowing that the initial ¹³⁴Cs/¹³⁷Cs ratio = 1 permits the separation of the Fukushima ¹³⁷Cs component from the fallout ¹³⁷Cs component at Sta. P26. Fukushima ¹³⁷Cs is undetectable below 50 m.

Surface water distribution of Fukushima ¹³⁷Cs in 2012

(Aoyama et al., 2013; G. Hong, pers. comm.)

Main inventory of Fukushima ¹³⁷Cs had been transported towards central North Pacific By 2012. Levels of ¹³⁷Cs equal to 0.3 Bq/m³ measured at Sta. P26 in 2012 represent Leading edge of Fukushima plume.

June, 2013 Tully Mission

Distribution of ¹³⁷Cs from Fukushima on Line P in June, 2013 shows highest levels at Sta. P26 decreasing eastward to values < 0.5 Bq/m³ at Sta. P1.

Behrens et al. (2012) Global Ocean Circulation Model

Behrens et al. (2012) model (based on Nemo; 0.1° horizontal mesh size) estimates an arrival time of the ¹³⁷Cs plume at Sta. P26 of 3-5 y by current transport.

Behrens et al. Model

Coloured lines above represent model predictions of ¹³⁷Cs levels in coloured boxes (connected by arrows) in uppermost figure. Symbols are ¹³⁷Cs level measured at Sta. P26 in 2011, 2012 and 2013. Inset is a blow up of main figure, but on a linear scale.

Arrival of ¹³⁷Cs at Sta. P26 in June, 2012 precedes model predictions by several years.

Rossi et al. (2013) Ocean Circulation Model

Maps show progression of ¹³⁷Cs surface water plume across Pacific for times of 1, 3, 5 and 10 years after accident. Green symbol is for Sta. P26. By 2016, major component of ¹³⁷Cs inventory has been transported from western to eastern North Pacific.

¹³⁷Cs at Sta. P26 (green symbol) is compared to model predictions for three locations: 49°N on shelf (yellow line); 30°N (red line); Hawaii (blue line). ¹³⁷Cs arrival at Sta. P26 in June 2012 is in agreement With Rossi model, but increases in June 2013 less sharply than predicted for shelf location at 49°N.

Rossi et al. (2013) versus Behrens et al. (2012) models

Behrens et al. (2012) predict maximum ¹³⁷Cs levels of 2 Bq/m³ near Sta. P26 in 2015 while Rossi et al. (2013) predict 25 Bq/m³. They can't both be right!

Rossi et al. (2013) versus Behrens et al. (2012) models

а

50°N 40° Lattude

30°N

20°N

10%

b

1000

100

137

Behrens et al. (2012) predict maximum ¹³⁷Cs levels of 2 Bq/m³ near Sta. P26 in 2015 while Rossi et al. (2013) predict 25 Bq/m³. They can't both be right!

Why the model discrepancies?

- 1. Each group uses different input functions, has different model resolution and handles eddies differently.
- 2. The atmospheric input is especially difficult to simulate, because there were no downfield sampling stations in the Pacific Ocean.

Why the model discrepancies?

- 1. Each group uses different input functions, has different model resolution and handles eddies differently.
- 2. The atmospheric input is especially difficult to simulate, because there were no downfield sampling stations in the Pacific Ocean.

Simulated atmospheric deposition of ¹³⁷Cs (Bq m⁻²) by Masingar II of MRI *Aoyama et al., in preparation*

To what historical fallout level does Fukushima return us?

Long-term trend of ¹³⁷Cs in surface water in the western North Pacific Ocean: pre-Fukushima

Aoyama, M., Hirose, K., TheScientificWorldJOURNAL, 4, 200-215, 2004 and update

<u>Caveat:</u> These levels are still well below maximum permissible concentrations in drinking water for ¹³⁷Cs of 10,000 Bq/m³: Not an environmental or human health radiological threat!

Aoyama, M., Hirose, K., TheScientificWorldJOURNAL, 4, 200-215, 2004 and update

Conclusions

- 1. ¹³⁷Cs levels in upper 1000 m at Stas. P4 and P26 in June, 201 consistent with background levels in North Pacific from atmospheric nuclear weapons tests.
- Fukushima ¹³⁴Cs was detectable in upper 50 m at Sta. P26 in June, 2012, but not at Sta. P4 or at arctic stations. Fukushima ¹³⁷Cs levels were 0.3 Bq/m³.
- 3. ¹³⁴Cs was detectable along the entire Line P in June, 2013. Highest levels of 0.9 Bq/m³ were measured at Sta. P26.
- Arrival of Fukushima ¹³⁷Cs at Sta. P26 precedes model predictions by Behrens et al. (2012), but is in agreement with Rossi et al. (2013). However, 2013 increase in ¹³⁷Cs is less than predicted by Rossi et al. (2013).
- 5. Which model is closest to reality? Rossi et al. (2013) predict maximum levels of 25-30 Bq/m³ for North American shelf while Behrens et al (2012) predict maximum levels of only 2 Bq/m³. Future measurements on Line W should provide an answer.

Overview

The inventory of Fukushima radioactivity will almost entirely shift from the western to the eastern North Pacific during the next 5 years.

Many reasons for study-Human health- internal/external dose assessments Radioecology- marine biota New ocean tracers in Pacific Modeling/predictions of future accidents

PICES can make a contribution through activities of WG30.

Fact is: radioactivity frightens people, almost always disproportionately to the actual threat: gouvernment must recognise this and provide sound, science based knowledge (and wisdom?) on human and environmental risks.