Some maternal Steller sea lion diets elevate fetal mercury concentrations in the western Aleutian Island area of population decline.

Lorrie Rea
Maggie Castellini
Lucero Correa
Brian Fadely
Vladimir Burkanov
Todd O’Hara
Steller sea lion distribution in Alaska

Eastern distinct population segment (DPS) – ESA threatened
Western distinct population segment (DPS) – ESA endangered
Steller sea lion distribution in Alaska

Some propose that low reproductive rates/poor fecundity may contribute to lack of recovery of the western DPS (Holmes et al. 2007).

Current trend data available in Fritz and Gelatt 2010
Investigating heavy metal contaminants as a possible contributor to lack of recovery

Mercury (Hg) has been shown to:

- Bioaccumulate and biomagnify
- Be neurotoxic to humans and other fish-eating mammals
- Cause neurochemical changes that impact mammalian health and survival
- Lower reproductive rates in mink
- Be transferred transplacentally to expose fetus
Total mercury concentrations in Alaska Steller sea lions – previous studies

Beckmen et al. 2002 - young of the year < 3.5 µg/g in hair juveniles <7 µg/g in hair western DPS > eastern DPS

Holmes et al. 2008 - young pups < 10 µg/g in liver western DPS > eastern DPS

Castellini et al. 2012 - young pups > older age classes young pups < 21.5 µg/g in hair western DPS > eastern DPS
Young Steller sea lion pups in lanugo (natal pelage)
Total Mercury Concentrations ([THg]) in Steller sea lion hair (young pups highest)

Figure 2: Box and whisker plot of hair [THg] for all age groups from SEA and PWS. Horizontal line represents median, boxes represent the mid 50% distribution, whiskers represent the upper and lower 25% and individual points represent outliers. The width of each bar is proportional to the sample size which is also listed in Table 1.

Castellini et al. 2012
Rea et al. 2013
Ugamak to Agattu Islands

Castellini et al. 2012
Southeast AK to Amak Island
Hair total mercury (µg/g)

Modified from Castellini et al. 2012 and Rea et al. 2013
Increrased Risk Range, Health Canada

Benchmark Dose Lower Limit (BMDL)

Risk Range, Health Canada

Neurological effect level, fish-eating wildlife

Neurological effect level, fish-eating wildlife

Humans: NOEL and BMDL for the Faroese population

Polar bears: reduction of the NMDA receptor levels

Clinical symptoms of neurotoxicity

Increased Risk Range, Health Canada

Benchmark Dose Lower Limit (BMDL)

Risk Range, Health Canada
Modified from Castellini et al. 2012 and Rea et al. 2013
Mercury in the environment
Where are they getting the mercury?

Most wildlife are exposed to methylmercury through their diet.

The amount of methylmercury in prey items can vary by geographic location and by trophic position of the prey in the food web (biomagnification).
Utilize suckling pups to monitor changes in foraging ecology of their mothers.
Steller sea lion pups are born with developed vibrissae, thus the tip of the vibrissae represents tissue grown *in utero*, and reflects the maternal diet during this period of fetal development.
Methods:

• Analyzed the isotope ratios of carbon ($\delta^{13}C$) and nitrogen ($\delta^{15}N$) in pup vibrissae sections ranging from 0.2 to 0.5 mg.

• Segments of approximately 0.1 cm were selected every 0.5 cm along the length of the vibrissae from the tip (earliest *in utero*) to the root (representing current nursing signature at capture).
Methods:

• The suckling portion of this vibrissae was identified by the depleted carbon signature seen when feeding on high fat diets.
Methods:

- The suckling portion of this vibrissae was identified by the depleted carbon signature seen when feeding on high fat diets - removed.
- The remainder of the vibrissa was divided equally in two sections to represent mid- and late-gestation whisker growth.

![Graph showing distance from tip (cm) for Steller sea lion pup (SSL2011 ~7AL)]

- Mid-gestation
- Late gestation

![Graph showing in utero and recent diet]
Late gestation mean isotope ratios of the fetal vibrissae

Agattu Island 2011

- δ^{13}C
- δ^{15}N

- Hg > 40 ug/g
- Hg 10 - 20 ug/g
- Hg < 10 ug/g

Aleutian milk
We conclude:

- highest median [THg] found in the hair of young Steller sea lion pups in western Aleutian Islands
- wide range of [THg] in hair at Agattu Island: ~ 20% of surviving fetuses are exposed to relatively high levels of mercury *in utero*
- pups with the highest hair [THg] also showed elevated $\delta^{15}N$, suggesting that their dams were feeding on higher trophic level prey than pups with low [THg]
The bottom line for Hg...

- Very young (≤ 3 months) pups seem to have the highest total mercury concentrations
- Pups in the more western US populations appear to be exposed to higher levels of mercury through maternal diet
- Higher trophic level prey species likely contribute to the mercury exposure of sea lions
- Need a better understanding of sea lion diet in the western Aleutian Islands
Ongoing and future research:

• Mercury concentration in prey items (overall goal of how contaminants move through food webs)
• Modeling of diet using stable isotopes
• Other contaminants (POPs)
• Adult female contaminants and isotopes
• Retrospective analysis with archive samples
• Protective potential of selenium
• Toxicogenomics
• Immunology impacts
Acknowledgments:

We thank the members of our field collection teams in 2011, 2012 and 2013 and the crew of the R/V Tiglåx. We also acknowledge the efforts of S. Pierszalowski, G. Johnson, A. Christ and the staff of the Alaska Stable Isotope Laboratory for laboratory and data analysis assistance. We thank the Russian research team for access to paired mother/pup vibrissae in addition to hair samples.

Research funding provided through NOAA Cooperative Agreements NA17FX1079, NA04NMF4390170, NA08NMF4390544 and the State of Alaska. ADFG research conducted under MMPA permit #358-1564, 358-1769, 358-1888 and 14325 and ADFG ACUC #03-002, 06-07, 09-28, 2010-14R, 2011-025Routine and 2012-15Routine. Travel funds provided by PICES and UAF/INE.