Effects of nutrient transport through the Korea Strait on the seasonal and interannual variability in the East Sea ecosystem

Yuri Oh, Chan Joo Jang, Sinjae Yoo, and Chul Min Ko
Korea Institute of Ocean Science & Technology
Long-Term Mean Chlorophyll-a

East Sea

Mean Chlorophyll a

Korea Strait
(Yoo & Park, 2009)
Nutrient Supply through the Korea Strait

(Onitsuka et al 2007)

EK: upwelling along the East coast of Korea
WC: Western Channel of Korea Strait
EC: Eastern Channel of Korea Strait
Nutrient Transport through the KS

Tsushima current

Kuroshio current

Nutrient poor

East Sea
Nutrient Transport through the KS

Tsushima intermediate water supplies nutrient to the SCM layer

vertical cross sections of fluorescence (Aug 2008)

Roh et al. (2012)

Large amount of nutrient

Morimoto et al. (2009)

DIN : Dissolved inorganic Nitrogen

DIP : Dissolved inorganic phosphorus

total 3.59 kmol/s

total 0.29 kmol/s

SCM layer : Subsurface Chlorophyll Maximum layer

DIN Transport

DIP Transport
Objective

To investigate how the nutrient transport through the KS affects the low trophic ES ecosystem.
Hypothesis:
Nutrient transport through the KS contributes to the seasonal and interannual variations of the ES ecosystem.

3 numerical experiments with different nutrient transport
1) nutrient flux with seasonal variation only
2) no nutrient flux
3) nutrient flux with seasonal/interannual variations

Methodology:
A 3D physical-biological coupled model

Assumption:
No other nutrient supplies (from atmosphere, river discharge etc)
3D Physical–Biological Coupled Model

ROMS + Low trophic biological model

NPZD model

\[
\frac{\partial N}{\partial t} + \mathbf{u} \cdot \nabla N = D + \gamma_n GZ - UP + \frac{\partial}{\partial z} \left(k_v \frac{\partial N}{\partial z} \right),
\]

\[
\frac{\partial P}{\partial t} + \mathbf{u} \cdot \nabla P = UP - GZ - \sigma_d P + \frac{\partial}{\partial z} \left(k_v \frac{\partial P}{\partial z} \right),
\]

\[
\frac{\partial Z}{\partial t} + \mathbf{u} \cdot \nabla Z = \left(1 - \gamma_n \right) GZ - \zeta d Z + \frac{\partial}{\partial z} \left(k_v \frac{\partial Z}{\partial z} \right),
\]

\[
\frac{\partial D}{\partial t} + \mathbf{u} \cdot \nabla D = \sigma_d P - \zeta d Z - D + \omega_d \frac{\partial D}{\partial z} + \frac{\partial}{\partial z} \left(k_v \frac{\partial D}{\partial z} \right)
\]

Nitrogen cycle

Powell et al. (2006)

\[
G = R_m \left(1 - e^{-\Delta P} \right),
\]

\[
I = I_0 \exp \left(k \zeta + k_p \int_0^z P(z') dz' \right),
\]

\[
U = \frac{V_m N}{k_N + N} \frac{\alpha I}{\sqrt{V_m^2 + \alpha^2 I^2}}
\]

Topography: ETOPO5

Horizontal resolution: 1/6°

Vertical layers: 30 layers

Table 1. Parameter Values

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Symbol</th>
<th>Value</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light extinction coefficient</td>
<td>(k_e)</td>
<td>0.067</td>
<td>m⁻¹</td>
</tr>
<tr>
<td>Self-shading coefficient</td>
<td>(k_p)</td>
<td>0.0095</td>
<td>m² mmol-N⁻¹</td>
</tr>
<tr>
<td>Initial slope of P-I curve</td>
<td>(\alpha)</td>
<td>0.025</td>
<td>m² W⁻¹</td>
</tr>
<tr>
<td>Surface irradiance</td>
<td>(I_0)</td>
<td>158.075</td>
<td>W m⁻²</td>
</tr>
<tr>
<td>Nitrate uptake rate</td>
<td>(V_m)</td>
<td>1.5</td>
<td>d⁻¹</td>
</tr>
<tr>
<td>Uptake half saturation</td>
<td>(k_N)</td>
<td>1.0</td>
<td>mmol-N m⁻³</td>
</tr>
<tr>
<td>Phytoplankton senescence</td>
<td>(\omega_d)</td>
<td>0.1</td>
<td>d⁻¹</td>
</tr>
<tr>
<td>Zooplankton grazing rate</td>
<td>(R_m)</td>
<td>0.52</td>
<td>d⁻¹</td>
</tr>
<tr>
<td>(llev constant)</td>
<td>(\alpha_L)</td>
<td>0.06</td>
<td>m³ mmol-N⁻¹</td>
</tr>
<tr>
<td>Excretion efficiency</td>
<td>(\gamma_x)</td>
<td>0.5</td>
<td>d⁻¹</td>
</tr>
<tr>
<td>Zooplankton mortality</td>
<td>(\omega_z)</td>
<td>0.145</td>
<td>d⁻¹</td>
</tr>
<tr>
<td>Remineralization</td>
<td>(\delta)</td>
<td>1.03</td>
<td>d⁻¹</td>
</tr>
<tr>
<td>Detrital sinking rate</td>
<td>(w_d)</td>
<td>8.0</td>
<td>m d⁻¹</td>
</tr>
</tbody>
</table>
Experiment Results

1) nutrient flux with seasonal variation only
2) no nutrient flux
3) nutrient flux with seasonal/interannual variations

<table>
<thead>
<tr>
<th></th>
<th>(seasonally varying) Nutrient flux</th>
<th>No flux</th>
</tr>
</thead>
</table>
| **Initial condition** | N : WOA2005
P, Z, D : 1.0 mmolN/m³ | |
| **Biological boundary condition (at KS)** | N : WOA2009
P : SeaWiFS chlorophyll (50%)*
Z, D : SeaWiFS chlorophyll (20%)*
*corresponding to the ratio with chl-a | closed
(boundary value = inner value) |
| **Spin-up** | 10 years | |
| **Forcing** | ECMWF interim (climatology, bulk formula) | |
Surface Chl-a (mg/m³) in Spring and Fall

nutrient flux

- **spring**
 - Positive effect decreased gradually toward the northern ES in the spring bloom season

- **fall**
 - Affected in the entire southern part of the subpolar front in fall bloom season

no flux

nutrient flux – no flux

- Almost zero

- 0.4 m/s

- Subpolar front
nutrient concentration (mmolN/m3) along the 130°E in Feb

- nutrient transport through the KS only
- nutrient through the KS + other supplies
Annual Mean Chl-a (mg/m³) in Surface & Subsurface Layers

Surface
- 0-5m
- Spring bloom
- Fall bloom

Subsurface
- 20-40m
- SCM

Nutrient Flux
- No flux
- Nutrient flux – no flux

Spring Bloom
- 51%

Fall Bloom
- 35%
- 53%
Experiment Results

1) nutrient flux with seasonal variation only
2) no nutrient flux
3) nutrient flux with seasonal/interannual variations

2004-2012 Nutrient flux anomalies

- 0–150 m integrated (whole water column)
- 20–40 m integrated (subsurface layer)
Correlations of Nutrient flux (kmol/s) Anomalies with Chl–a (mg/m³) Anomalies

- 0-150m integrated nutrient flux ano.
- 20-40m integrated nutrient flux ano.
- Surface 0-5m chl.-a ano.
- Subsurface 20-40m chl.-a ano.

Annual mean Chl-a no flux almost zero = Nutrient flux only
Summary

The effect of nutrient transport through the Korea Strait …

Annual mean chl–a

Spring bloom Fall bloom surface subsurface

35% 51% 53%
The downstream areas of the Tsushima current show good correlation of nutrient flux with chlorophyll-\(\text{a}\) concentration.

The interannual variation of nutrient transport through the KS affects the variation of the chlorophyll-\(\text{a}\) concentration with time-lag.
• Low resolution-1/6
 – EKWC overshooting
 – UWE, upwelling
• NPZD model ...
 – Only one compartment of Phyto. & Zoo.
 – T dependency (photosynthesis, grazing etc.) ignored
 – biological BC & parameters poorly known
Thank you very much