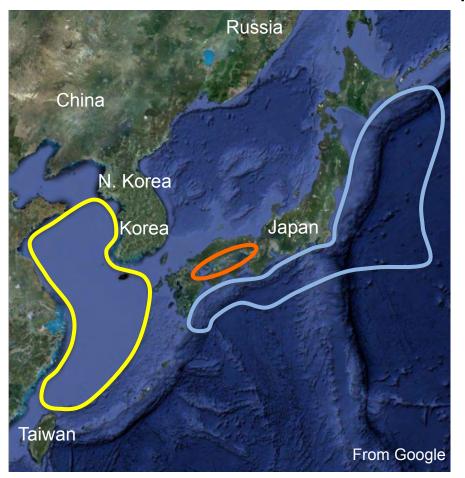

Ecosystem responses to anthropogenic activities and natural stressors in the East China and Yellow Seas

Motomitsu TAKAHASHI, Seikai National Fisheries Research Institute, Fisheries Research Agency, Japan

Mingyuan Zhu, The First Institute of Oceanography, State Oceanic Administration, China

Background

Understanding cumulative impacts of multiple stressors is urgent issues for sustainable use of ecosystem serveices.



Halpern et al. (2008)

Ban et al. (2010)

PICES WG-28 has been trying to develop ecosystem indicators to characterize ecosystem responses to multiple stressors.

Comparative study on ecosystem responses to anthropogenic activities and natural stressors among inland, shelf and oceanic waters around Japan

Takahashi et al. (2012) at PICES S10

Shelf waters	(4)
East China	Sea
Yellow Sea	

Inland waters (5) Seto Inland Sea

Oceanic waters (7) Kuroshio/Oyashio


Ecosystem Changes under multistressors in the Yellow Sea

Mingyuan Zhu, Ruixiang Li and Zongling Wang First Institute of Oceanography, State Oceanic Administration

Hiroshima, Oct. 19, 2012

Topography and sediments of the East China and Yellow Seas

Habitats-stressors matrix

Impacts of human activities and natural stressors were evaluated using the habitat-stressors matrix.

	Activities/Stressors	Intertidal	Coastal	Shelf	Oceanic
S	 Pollution from land Coastal engineering 	1. Rocky	1. Seagrass	1. Soft bottom	1. Soft bottom slope
an itie	3. Coastal development	2. Beach	2. Kelp forest	2. Hard bottom	2. Hard bottom slope
ti N	4. Direct human impact	3. Mud	3. Rocky reef	3. Ice	3. Soft bottom benthic
Human activities	5. Ecotourism 6. Commercial activity	4. Salt marsh	4. Suspension	4. Pelagic water	4. Seamount
	7. Aquaculture		feeder reef	column	5. Vents
Natural stressors	8. Fishing – demersal		5. Sub-tidal soft bottom		6. Soft bottom canyon
	9. Fishing – pelagic		Soft Dottom		7. Hard bottom canyon
	10. Fishing – illegal 11. Offshore development 12. Pollution from ocean				8. Deep pelagic water column
	13. Freshwater input14. Sediment input				9. Upper pelagic water column
	15. Nutrient input 16. HABs				
	17. Нурохіа				
	 Species invasion Sea level change Sea temperature 				
	20. Sea temperature				

Scoring vulnerabilities

For each cell, vulnerabilities were scored as spatial scale, frequency, functional impact, resistance, recovery time.

	Weak 🤇	1		Strong
Vulnerabilities	1	2	3	4
Spatial scale	< 10 km ²	10-100 km ²	100-1000 km²	> 1000 km ²
Frequency	> 5 yrs	1-5 yrs	Seasonal	Continuous
Functional impact	Species	Single trophic	Multitrophic	Community
Resistance	Positive impact	High	Moderate	Low
Recovery time	< 1 yr	1-10 yrs	10-100 yrs	> 100 yrs

For each vulnerability, certainty was scored as 4 levels.

	Unsure <	Sure		
	1	2	3	4
Certainty	< 15 %	15-50 %	50-85 %	> 85 %

How to treat scores

Impacts (I) of stressors were evaluated using the weighted mean vulnerability (v) with certainty (c).

 $I = \Sigma V \cdot C / C_{total}$

Habitat	Sub-habitat	Activity/Stressor	•	atial ale	Frequ	uency		phic bact		stance ange		overy ne	Impact:
			V	С	v	С	V	С	v	С	V	С	
INTERTIDAL	beach	Fishing - pelagic	2	2	3	2	2	2	2	2	2	2	2.10
COASTAL	sub-tidal soft bottom	Nutrient inputs	2	2	2	2	2	2	2	2	2	2	2.00
COASTAL	sub-tidal soft bottom	Coastal engineering	3	4	3	4	4	3	4	4	3	3	3.11
SHELF	soft bottom	Freshwater input	4	3	3	3	3	3	3	2	3	2	3.00
SHELF	soft bottom	Sediment input	3	3	4	3	3	2	2	2	2	2	2.50
SHELF	soft bottom	Nutrient inputs	3	3	4	3	3	3	2	3	3	2	2.64
SHELF	soft bottom	Polution from land	3	3	4	3	3	3	3	3	3	2	2.86
SHELF	soft bottom	Fishing - demersal	4	3	4	3	4	3	4	3	3	3	3.47
SHELF	soft bottom	Fishing - pelagic	3	3	4	3	2	3	3	3	3	3	2.67
SHELF	soft bottom	Sea temperature	4	4	4	4	4	4	3	3	3	3	3.22
SHELF	soft bottom	HABs	2	3	3	3	3	3	3	3	3	3	2.60
SHELF	soft bottom	Нурохіа	2	2	3	2	3	3	4	2	3	2	2.91
SHELF	soft bottom	Offshore development	1	3	2	2	3	3	3	2	2	2	2.17
OCEANIC	soft bottom slope	Sea temperature	4	4	4	4	4	4	3	3	3	3	3.22

Vulnerability scores

			≦	2.0		2.1-2	2.5	2.6-3.0	3.1-	3.5
	Intertidal			Coastal				Shelf		
Activities/Stressors	Rocky	Mud	Salt marsh	Beach	Sea grass	Rocky reef	Suspention feeder reef	Sub-titdal soft bottom	Soft bottom	Pelagic water column
1. Pollution from land	2.8	2.8	2.5	2.5	2.5	2.8	2.5	2.8	2.9	2.9
2. Coastal engineering	3.5	3.5	3.3	3.3	3.3	3.5	3.3	3.3		
3. Coastal development	3.5	3.5	3.3	3.3	3.3	3.5	3.3	3.5		
8. Fishing - demersal									3.5	
9. Fishing - pelagic				2.1						3.1
11. Offshore development									2.1	
12. Pollution from ocean									3.1	3.1
13. Freshwater input	2.9	2.9	2.6	2.6	2.9	2.9	2.9	2.9	3.0	3.0
14. Sediment input									2.5	
15. Nutrient input	3.1	3.1	2.8	2.8	2.8	3.1	2.8	2.5	3.0	3.3
16. HABs									2.6	2.9
17. Hypoxia									3.2	
18. Species invasion	2.5	2.5	2.3	2.3	2.3	2.5	2.3	2.5		2.9
20. Sea temperature									3.2	3.2

1. Coastal development strongly affects to the intertidal and coastal waters.

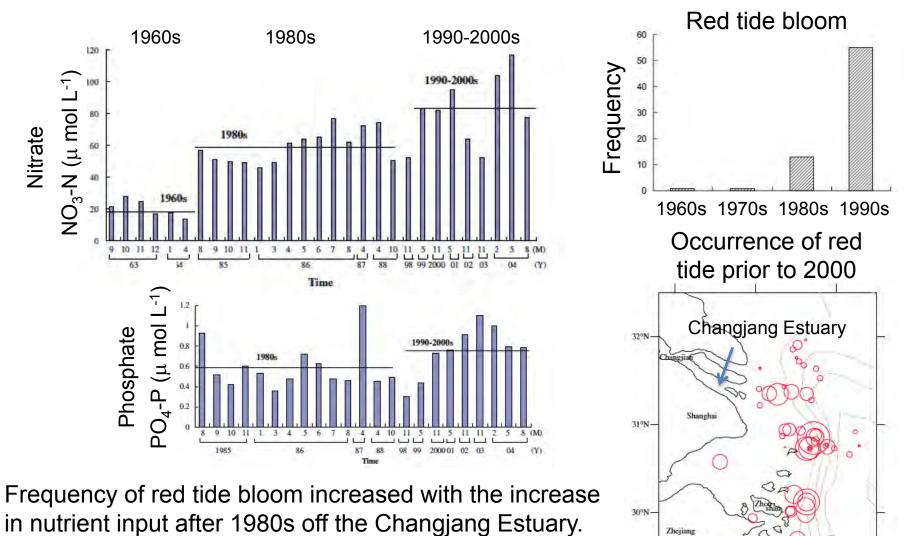
2. Pollution from land and nutrient input impact through intertidal to shelf waters.

3. Fishing and increasing temperature affects strongly to the shelf waters.

Trends of pollutant contaminants in bivalves in the Yellow Sea during 1997-2006

Coastal Area	Oil	THg	Cd	Pb	As	DDT	PCBs
Water near Dalian	SI.	7	÷	4	7	+	
Water near Yantai	\$	2	\$	1.0	ы	24	+
Water near Qingdao	R	÷	2	8	8	N	÷
Water in north Jiangsu	8		N.	2	ы	\$	÷.
Water near Nantong	\$	*	N.	5	8	2	3
Changjiang Estuary	2	÷	N	7	4	\$	\$
significantly increasing	7	increasing	ir	slightl acreasing	y	⇒ no	change
slightly decreasing	я.	decreasing	للا d	significat lecreasing	ntly	no en	ough dat

Contamination of mercury, cadmium, arsenic and DDT in bivalves increases along the coast line of Yellow Sea.


Reclamation in the Yellow Sea

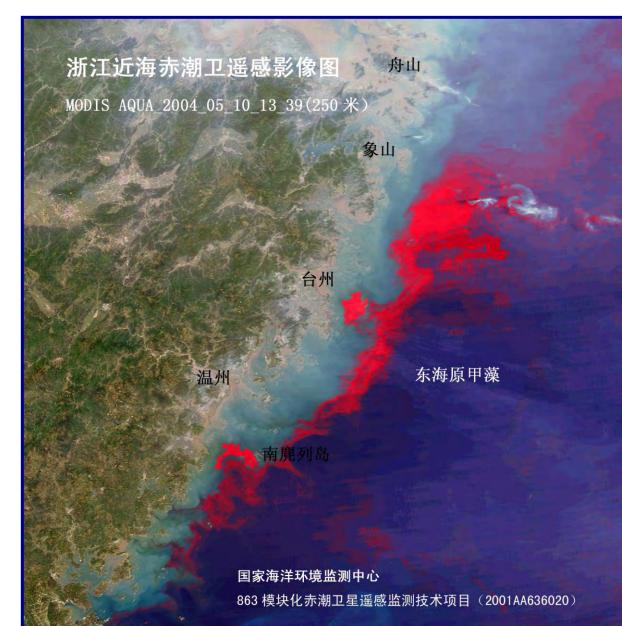
Jiangsu Province

- Presently, over 5000 km² coastal wetlands, about one-fourth of China's total.
- Over 1300 km² coastal wetlands reclaimed over the past 15 years
- Plans to reclaim another 1800 km² by 2020

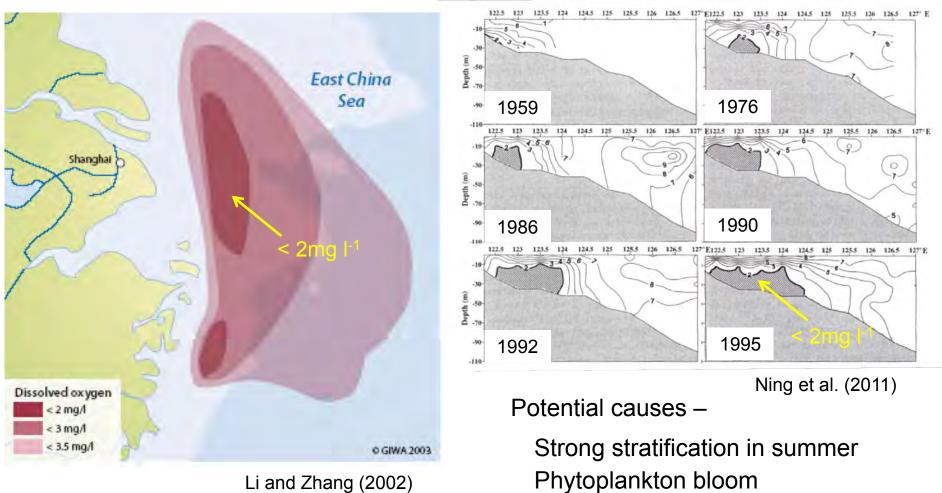
Nutrient increase and harmful algal bloom off the Changjang Estuary

Zhou et al. (2008)

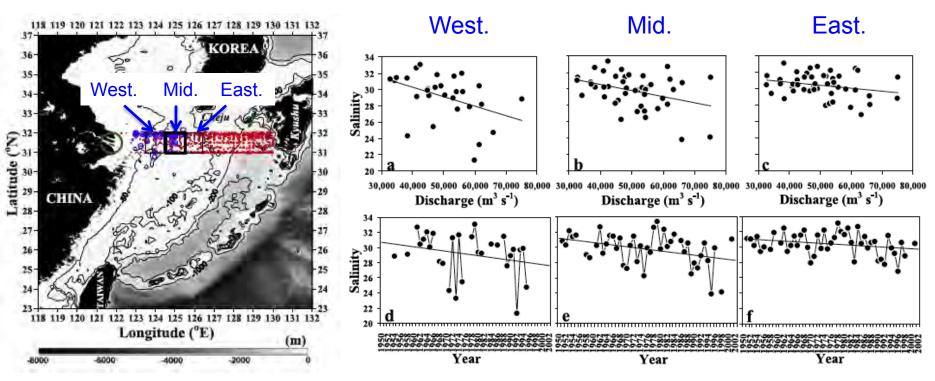
Province

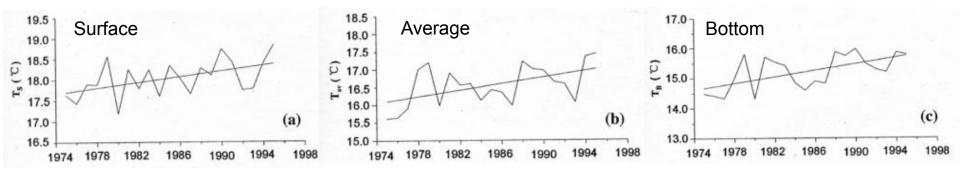

121°E

122°E


123°E

Satellite images of harmful algal bloom

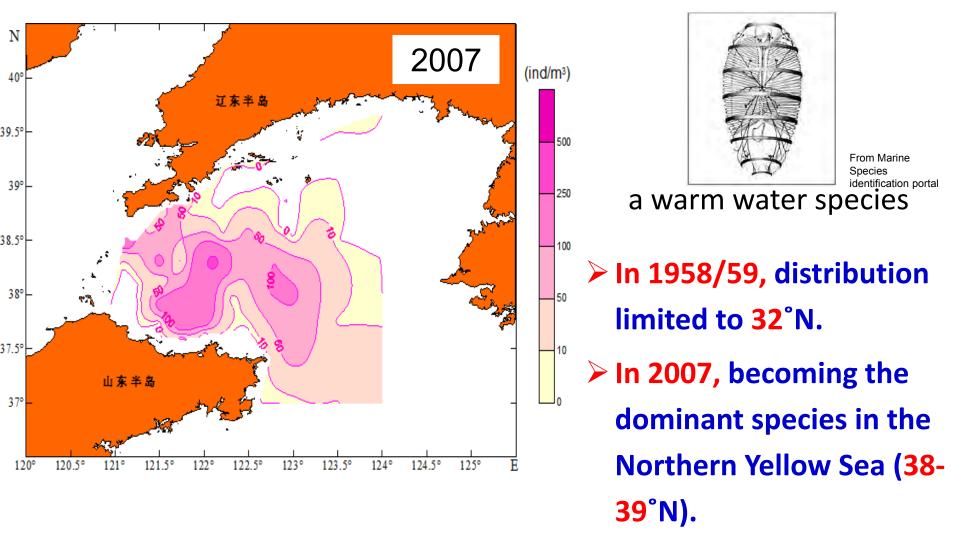

Hypoxia: dissolved oxygen off the **Changjang Estuary in summer**


Taiwan Warm Current

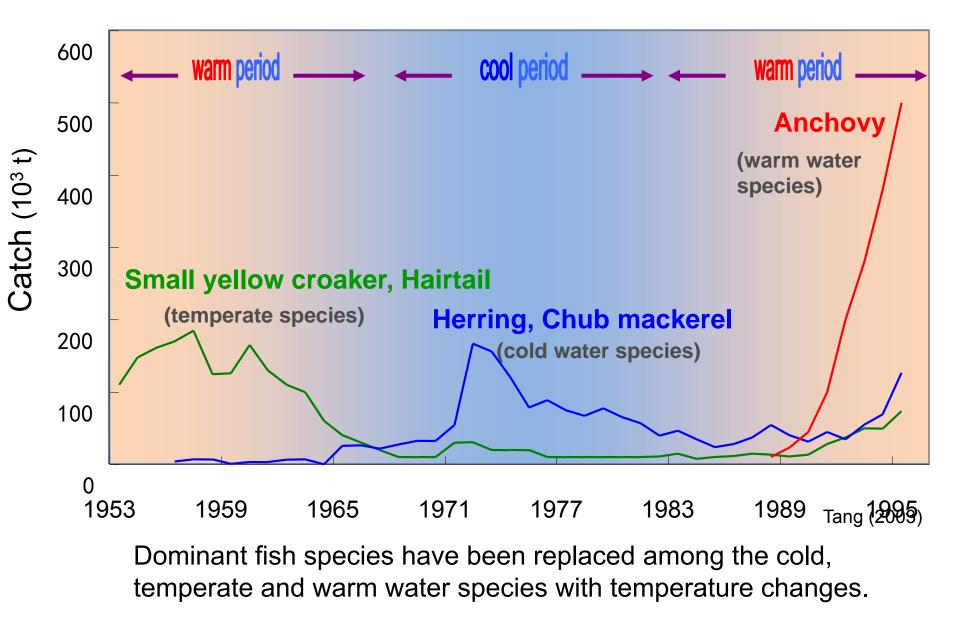
Li and Zhang (2002)

Warming and freshening in the East China Sea

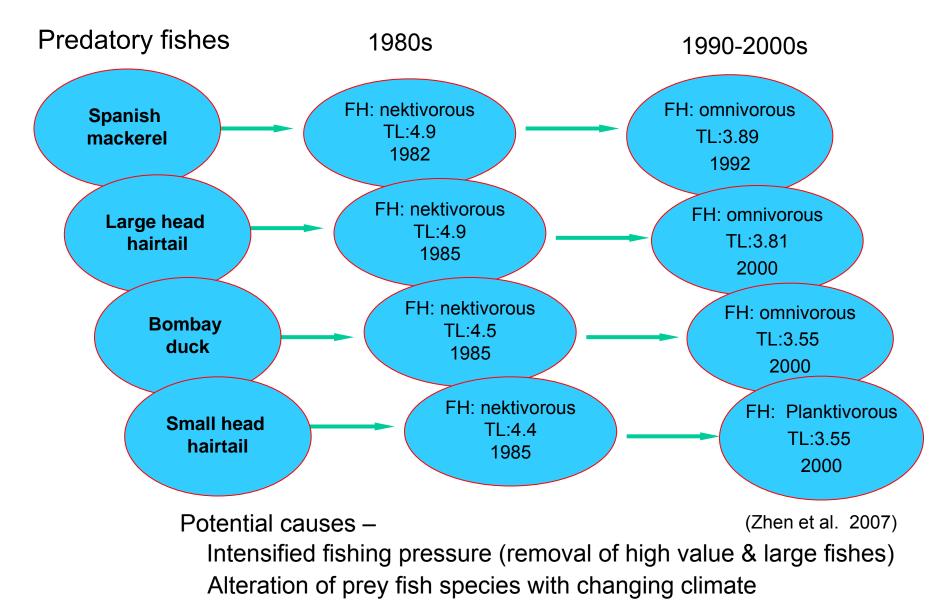
Surface salinity decreased during 1950 – 2002. Siswanto et al. (2008)



Temperature increased during 1975 – 1995.


Ning et al. (2011)

Warm water tunicate moving north


Doliolum denticulatum

Shit of dominant fishes with climate change

Feeding habits of predatory fish species in the Yellow Sea during 1980-2000

Main stressors impacting ecosystems in the East China and Yellow Seas

Activities/Stressors	ECS/YS	SETO	K/O
1. Polution from land	2.7	2.1	
2. Coastal enginnering	3.4	2.6	
3. Coastal development	3.4	2.7	
4. Direct human impact		2.7	
5. Ecotourism		1.4	
6. Commertial activity			
7. Aquaculture		2.6	
8. Fishing - demersal	3.5	2.3	2.8
9. Fishing - pelagic	2.6	2.1	3.3
10. Fishing - illegal			
11. Offshore development	2.1		
12. Polution from ocean	3.1	3.2	
13. Freshwater input	2.9	2.4	
14. Sediment input	2.5	2.7	
15. Nutrient input	2.9	3.2	3.0
16. HABs	2.8	2.6	
17. Hypoxia	3.2	2.5	3.0
18. Species invasion	2.5	2.8	
19. Sea level change		3.0	3.2
20. Sea temperature	3.2	3.2	3.2

Coastal development and engineering have strong impacts to the ECS/YS and the SETO.

Demersal and pelagic fishing impact to the ECS/YS and the K/O, respectively.

Nutrient input has resulted in HABs and Hypoxia.

Increasing sea temperature affects to all 3 ecosystems.

Conclusions

- The habitats-stressors matrix was applied to the ECS/YS.
- Ecosystem responses to multiple stressors in the intertidal and coastal waters was gained.
- Coastal development, fishing, nutrient input and increasing temperature impact strongly to the ECS/YS.
- Need more responses for evaluation.