Can harmful algal bloom mitigation make the problem worse?

David M. Kidwell and Susan Baker

National Oceanic and Atmospheric Administration
National Centers for Coastal Ocean Science
Outline

• Background
• PCMHAB
• Environmental Assessment
• Potential Impacts

• Requirements
• Perspective
Context

• Presentation from research/science perspective

• US environmental compliance can be extremely technical, involving an array of lawyers and specialists

• Assisting government, non-profits, and private companies navigate the various laws is a significant industry
HAB Mitigation in the US

- Use of control and mitigation techniques is relatively limited
- Primarily focused on early warning and forecasting
- Recent events highlight the significant need for PCM strategies
Recent events highlight the significant need for PCM strategies.
PCMHAB

- Prevention, Control, and Mitigation of Harmful Algal Blooms (PCMHAB) Research Program
- Established to foster the research on promising prevention, control, and mitigation (PCM) techniques
- Community developed, mandated by US Congress

S. 1254: Harmful Algal Bloom and Hypoxia Research and Control Amendments Act of 2014

Introduced: Jun 27, 2013 (113th Congress, 2013–2015)

Status: Enacted — Signed by the President on Jun 30, 2014

Law: This bill became the law numbered Pub.L. 113-124.
PCMHAB

Conducted in 3 phases:
- **Development**: advance and evaluate unproven but promising techniques
- **Demonstration**: test, validate, and evaluate promising technologies
- **Technology Transfer**: facilitate the transition to end-user application
PCMHAB

• Initiated in 2010

• Selected 2 projects that included field demonstration
 • Clay flocculation of *Microcystis* in Chesapeake Bay
PCMHAB

- Initiated in 2010

- Selected 2 projects that included field demonstration
 - Clay flocculation of *Microcystis* in Chesapeake Bay
 - Suppression of *Alexandrium* blooms by sediment resuspension
PCMHAB

- Initiated in 2010

- Selected 2 projects that included field demonstration
 - Clay flocculation of *Microcystis* in Chesapeake Bay
 - Suppression of *Alexandrium* blooms by sediment resuspension

- Successful projects were submitted for internal review and approval
 - Routine process done for every grant recommended for funding
 - Approval has never been an issue
 - Until......
We received significant concerns about environmental impacts.

“Due to settled time periods of Cape Cod, historic and prehistoric, there may be a requirement for cultural and historical surveys.”

“Nauset marsh waters used to have extensive eelgrass beds. Large scale turnover of sediments will impact the current habitat. Assessment required.”

“Just because water is already negatively impacted by a HAB, does not mean that the action would have no impact. This exactly how cumulative effects occur.”

An analysis of environmental impacts was required.
NEPA

- US environmental compliance mandated through the National Environmental Policy Act (NEPA)
- Provides a format for a comprehensive impact analysis of any government activity
 - Gov’t projects
 - Anything requiring a permit or approval
 - Gov’t funding of projects
NEPA

- Three possible ways to meet NEPA requirements
 - Categorical exclusion (CE).....significant impacts *not likely*
 - Environmental Assessment (EA)....significant impacts *possible*
 - Environmental Impact Statement (EIS)....significant impacts *likely*
- Amount of analyses, efforts, and public engagement increases GREATLY between CE and EIS
- Most research is funded through a categorical exclusion, but not sufficient for PCM demonstration
To meet NEPA requirements an *environmental assessment* was initiated for the PCMHAB program field demonstration projects.

The environmental assessment asks....

Will projects result in *significant direct, indirect, or cumulative impacts* to the environment?
Environmental Assessment

Core components include:

- Integrates a suite of US environmental laws focused on:
 - Water Quality
 - Protected Species (endangered, threatened, etc)
 - Invasive species
 - Essential habitat (e.g., SAV beds, coral reefs)
 - Historic preservation
 - Human health
Environmental Assessment

• Analysis of the impacts of PCM demonstration versus no action

• Goal was to evaluate PCM demonstration techniques for possible significant impacts on the environment

 AND

• To advance PCM field demonstration prudently, but as rapidly as possible
Environmental Assessment

Physical control methods evaluated:
• Clay flocculation
• Sediment resuspension, burial, and removal
• Cell harvesting and removal
• Water column mixing

Chemical control methods evaluated
• Native macroalgae and extracts
• Barley Straw
• Biosurfactants
• Purified algidical compounds
• Copper
• Silica
• Hydrogen peroxide

Most biological controls EXPLICITLY EXCLUDED
Environmental Assessment

How did we choose these techniques?

Criteria for inclusion

• Techniques that manipulate the environment
• Promising laboratory and/or mesocosm results
• Already in use (private ponds and lakes)
• Expected to be ready for demonstration in next 5 years
Environmental Assessment

How did we choose these techniques?

Criteria for exclusion

- Likelihood of significant environmental harm
 - Sodium hypochlorite (bleach)
 - Introduction of live organisms (biological control)
 - Algicidal bacteria/viruses
 - Non-native macroalgae
 - Categorical exclusion sufficient
 - Selective shellfish breeding for aquaculture
Overall PCM Effects

Potential effects identified for all PCM techniques:

• Water quality impairments associated with dead or lysed cells
 • Increased biological oxygen demand
 • Low dissolved oxygen and hypoxic

• Initiate or enhance release of toxins

• Temporary elimination of recreation areas

• Overall effects not anticipated to be significant or add to environmental impacts already being experienced
Sediment-based Controls

- Includes clay flocculation and sediment resuspension and/or burial

Possible effects include:

- Water quality:
 - Increased turbidity
 - Altered nutrient levels
 - Hypoxic or anoxic conditions
- Could violated discharge allowances under the Clean Water Act

- Size of system and flushing rate is a critical factor
Possible effects include:

• Living resources
 • ‘Coughing’ in fish
 • Reduced clearance rates in bivalves
• Sedimentation of key habitats (e.g., coral reefs, oysters)
 • Reduced SAV photosynthesis and hydrogen sulfide toxicity
• Human health risks limited to possible resuspension of contaminants
Mixing and Cell Harvesting

• Includes water column mixing and physical removal of HAB cells

Possible effects include:

• Water quality:
 • Possible increases in turbidity
 • Temporary movement of low DO waters to surface

• Living resources
 • Altered plankton community composition
 • “Bycatch” of non-target species
 • Food web disruption through removal of primary production
Algicidal Isolates

- Includes isolates from bacteria, viruses, and macro-algae

Possible effects include:

- Water quality impairments:
 - Release of toxins through cell lysis
 - Hypoxic conditions from cell decay

- Direct and indirect impacts to living resources:
 - Mortality of non-target phytoplankton
 - Enhanced toxin uptake
 - Food web disruption through removal of primary production
 - Higher trophic level effects?
Copper and H_2O_2

- Includes copper sulfate, chelated compounds, and hydrogen peroxide
- Copper-based algicides are widely used in freshwater

Possible effects include:

Water quality:
- Contamination of sediments
- Water soluble
- Potential to violate Clean Water Act

Living resources
- Can be toxic to non-target organisms
- Has the potential to bioaccumulate
- Sub-lethal effects on hormone function, growth rate, and respiratory distress
Other PCM Techniques

- Includes biosurfactants, silica, barley bales, and whole macro-algae

Possible effects include:

- Water quality:
 - Localized turbidity from dissolved organic matter (barley)
 - Foaming in high energy environments (biosurfactants)
 - Altered nutrient dynamics

- Living resources
 - Enhanced growth of existing diatoms (silica)
 - Can attract wildlife (barley, macro-algae)
 - Mortality of non-target phytoplankton (barley)
Explicit definition of “demonstration” for PCMHAB program:

- The minimum amount of a control method anticipated to decrease, but not eliminate, a HAB
- Limited to waters already experiencing a HAB
- Less than an acre in size with limited number of applications
- Explicitly not full implementation of a technique

Conclusions
Conclusions

- Environmental impacts resulting from PCM techniques likely

- Determined that demonstration will likely not result in “significant” impacts (good or bad)

- Recommends the funding of field demonstration projects since the majority of impacts would be:
 - Temporary
 - Limited in scope and scale
 - Subject to strict guidelines and monitoring requirements

- Overall, quantification of habitat and living resource effects is limited
Mitigation Measures

Extensive technique specific guidelines required to reduce impacts to:

- Protected Species
 - Avoid use of copper in waters with low pH and Ca-CO$_3$
 - Maximize use of biodegradable chemicals
- Water Quality
 - Use of turbidity curtains
 - Clay flocculation only on ebb tides
- Human Health
 - Contaminated soils or toxin collection disposal plan
 - Restricted access
- Benthic Environment
 - Shallow slope wall angle for sediment removal
 - Sediment grain size and contaminants
Mitigation Measures

- Projects are excluded from testing PCM techniques must avoid and maintain a 100 meter buffer around:
 - Coral reefs
 - Turtle nesting areas (while turtles are present)
 - Bird nesting areas
 - Wetland
 - Submerged aquatic vegetation beds
 - Cultural or historical resources

- Winds, waves, and tides should be considered while maintaining a 100 meter buffer
Monitoring Requirements

• All projects must:
 • Analyze zoo- and phytoplankton abundance and density pre- and post-treatment
 • Record water quality and hydrology parameters pre- and post-treatment
 • Determine the abundance and density of benthic fauna pre- and post-treatment

• All PCM techniques using chemicals must test for desired concentrations post-treatment

• Sediment-based PCM techniques conduct an initial screening for legacy industrial compounds, metals, and pesticides

• Additional project-specific monitoring will likely be necessary
Additional Perspectives

• Core tenant of the NEPA process is to demonstrate analysis of possible environmental impacts and compare alternatives
• Implementation will likely need a “toolbox” of techniques
• Balance between treatment, no treatment, and side-effects
 • Nuisance bloom....versus....
 • Drinking water ban impacting 100,000’s of people
Critical factors in “tool selection”

Effectiveness
- Species
- Toxin
- Env.

Side-effects
- Habitat
- Species
- Human

Society
- Severity
- Cost
- Disturbance

Laws and Regulations

Ideal Technique
Additional Perspectives

Case Study: Poplar Island (Microcystis)

Effectiveness
- Barley bales
- Clay
- Phoslock
- Copper

Side Effects
- Nesting birds
- Migration
- Water quality

Laws
- Discharge
- Sediments

Society
- Cost
Concluding Thoughts

• Environmental laws should be not be a barrier
• Some key questions to consider
 • Is a technique practical?
 • Could there be unintended consequences?
 • Is there another, less harmful option?
 • And, finally....

Could mitigation make the problem worse?
The End

David.Kidwell@noaa.gov