The Influence of Freshwater on Fishery Production on Continental Shelves: The Mississippi River

Churchill B. Grimes and Steve Lindley
National Marine Fisheries Service
Santa Cruz, California, USA
Fishery Production

Nutrient enrichment processes

1. Coastal upwelling
2. Tidal mixing
3. Land-based runoff, especially river discharge

Biological processes
Primary and secondary production
Larval fish production

Physical oceanography
convergence upwelling
transport retention
stratification
U.S. Gulf of Mexico Catches from Areas Influenced by the Mississippi River Discharge

Commercial
- 88% of 726,000 MT

Sport
- 32% of 42,000 MT
Circumstantial Evidence of the Importance of River Discharge

Disruption

• Filling of the Aswan Dam 1965-69 reduced flow by 90% with attendant decline in Egyptian fishery landings from 37,800 MT in 1962 to 7,142 MT in 1976 and simplified community structure (Bebars and Laserre 1983)

• Colorado River diversion eliminated spawning and nursery areas for *Totaba macdonaldii* in the Gulf of California, eventually resulting in a population decline that destroyed important commercial and sport fisheries leading to listing as endangered species in 1976 (Barrera-Guevara 1990)
Restoration

- On the Ganga River in India in 1975 fresh water flow was restored to the Hooghly distributary doubling fishery landings in the estuary (Sinha, et al. 1996).

- When Nile River flow was restored after the Aswan Dam was filled and releases of water from the dam restored river flow, Egyptian fishery landings recovered to one-third the pre-dam level (Smetacek 1986) and had fully recovered by 1989, although with different community structure (Lasserre, et al. 1997).
Principle Ecological Groups of Fishes in Gulf of Mexico Catches

- **Oceanic pelagic species**, e.g., tunas and billfishes, that complete life history in oceanic waters

- **Reef species**, e.g., snapper and grouper, associated with hard substrata away from the turbid waters of Mississippi River discharge.

- **Estuarine dependent species**, e.g., menhaden, mullet and croakers, drums and seatrout, spawn in nearshore waters with transport of larvae and juveniles to estuarine nursery grounds for rearing.

- **Coastal species**, e.g., mackerels, bluefish, coastal herrings and jacks that complete life cycles pelagic continental shelf waters
Mississippi River Drainage Basin

- Largest in North America
- 43% of contiguous US
- Mean annual discharge = 735 km3
Mississippi River Discharge into the Gulf of Mexico

shelf water

turbidity front

plume water

tug boat
Salinity (ppt) Profile Along Transect of the Plume

From Grimes 2001
Distribution of Phytoplankton Biomass with Surface Salinity

From Dortch and Whitledge 1992
Mean Copepod Nauplius Densities in and Away from the Mississippi Discharge Plume

From Dagg et al. 1987 and Dagg and Whitledge 1991
Distribution of Copepod Nauplius Density with Surface Salinity

From Dagg and Whitledge 1991
Densities of Fish Larvae in the Vicinity of the Mississippi Discharge Plume and Away from the Plume

Hydrodynamic Convergence Along the Plume Front

Convergence zone with velocities up to 0.8 m/s
Observed and Potential (Calculated) Convergence Velocity at Mississippi River Turbidity Fronts

from Grimes 2001
Fishery production = (G+R)-(F+M)

where:
G = growth,
R = recruitment,
F = fishing mortality and
M = natural mortality
Fish larvae in the vicinity of the riverine discharge in general, and the frontal region in particular, (1) take advantage of abundant food and consume a superior diet, (2) grow faster and (3) have shorter larval stage duration and experience better survival.
Frequency of Occurrence and No. of Food Items in Anchovy Larvae

- Plume
- Front
- Shelf

Percent occurrence vs. Percent number

- Diatoms
- Copepods
Measures of Physiological Condition in Larval Anchovy

From Geiger et al. in prep
Mean Daily Growth of Spanish Mackerel Larvae in the Mississippi Plume

Mean daily growth (SL/age) vs. Salinity (ppt)

Frontal waters
Mean Daily Growth of Anchovy Larvae in the Mississippi Plume

Mean daily growth (SL/age)

Salinity (ppt)

N = 497
Mean Daily Growth of Yellowfin Tuna Larvae in the Mississippi Plume

- **Mean daily growth (SL/age):**
 - Salinity (ppt):
 - 30.0
 - 30.5
 - 31.0
 - 31.5
 - 32.0
 - 32.5
 - 34.0

- Number of observations:
 - 9
 - 31
 - 68
 - 457
 - 99
 - 1
 - 2
Survivorship Curve for Spanish Mackerel

N=391, neuston and bongo samples
Instantaneous Daily Mortality Rates

<table>
<thead>
<tr>
<th>Species</th>
<th>Event</th>
<th>z</th>
<th>N</th>
<th>Ages(d)</th>
<th>Gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish mackerel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>plume (fall)</td>
<td>0.60</td>
<td>155</td>
<td>11 - 19</td>
<td>N & T</td>
</tr>
<tr>
<td></td>
<td>plume (spring)</td>
<td>0.68</td>
<td>47</td>
<td>12 - 18</td>
<td>N & T</td>
</tr>
<tr>
<td></td>
<td>non-plume (PC)</td>
<td>0.32</td>
<td>391</td>
<td>5 - 17</td>
<td>N & B</td>
</tr>
<tr>
<td></td>
<td>non-plume (SEAMAP)</td>
<td>0.20</td>
<td>25</td>
<td>6 - 16</td>
<td>N</td>
</tr>
<tr>
<td>King mackerel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>plume</td>
<td>0.23</td>
<td>49</td>
<td>6 - 17</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>non-plume</td>
<td>0.17</td>
<td>30</td>
<td>6 - 20</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>non-plume (SEAMAP)</td>
<td>0.83</td>
<td>360</td>
<td>4 - 10</td>
<td>B</td>
</tr>
<tr>
<td>Striped anchovy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>plume</td>
<td>0.23</td>
<td>120</td>
<td>7 - 15</td>
<td>N & T</td>
</tr>
<tr>
<td></td>
<td>front</td>
<td>0.13</td>
<td>132</td>
<td>7 - 17</td>
<td>N & T</td>
</tr>
<tr>
<td></td>
<td>shelf</td>
<td>0.09</td>
<td>245</td>
<td>7 - 20</td>
<td>N & T</td>
</tr>
<tr>
<td>Yellowfin tuna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>front</td>
<td>0.16</td>
<td>~200</td>
<td>3 - 12</td>
<td>N & T</td>
</tr>
<tr>
<td></td>
<td>shelf</td>
<td>0.43</td>
<td>~200</td>
<td>3 - 12</td>
<td>N & T</td>
</tr>
</tbody>
</table>
Summary of Results Relevant to Short Food Chain Hypothesis

• Some species of larvae are conferred a trophic advantage.
• Some species grow faster.
• Mortality rates appear to be higher.
• So, validity of the hypothesis depends upon relative magnitude of growth and mortality.
A simple model for the effects of growth and mortality on a population of larval fish:

\[N_t = N_0 \exp \left(-z \frac{L_c}{g} \right), \]

(1)

Where \(N_t \) is the number of fish surviving the larval period, \(z \) is the instantaneous daily mortality rate, \(L_c \) is the length that fish leave the larval stage and \(g \) is the daily growth rate. Thus, survival through the larval period, \(s = \frac{N_t}{N_0} \).

To evaluate the relative importance of changes in growth and mortality on \(s \), let \(f = \log \left(\frac{N_t}{N_0} \right) = -z \frac{L_c}{g} \). The effect of an incremental change in growth or mortality on \(s \) can be determined by examining the first derivatives of \(f \) with respect to \(z \) and \(g \):

\[\frac{\partial f}{\partial z} = - \frac{L_c}{g} \]

(2)

\[\frac{\partial f}{\partial g} = \frac{z L_c}{g^2}. \]

(3)

By examination of (2) and (3), we see that the sensitivity of \(s \) to changes in \(z \) and \(g \) depends upon the particular values of \(z, g \) and \(L_c \), and that sensitivity of \(s \) to changes in \(g \) is nonlinear.
At small g, s is highly sensitive to changes in g. Over the ranges of g and z we observed ($z \sim 0.1 - 0.6 \text{ / d}$ and $g \sim 0.3 - 0.9 \text{ mm/d}$), an incremental increase in z has a stronger effect on s than an incremental increase in g.
Conclusion: If physical and biological conditions in the vicinity of the discharge aggregate prey for larval fish that results in a trophic advantage and faster growth, but also aggregates predators and increases mortality rate of larvae, the disadvantage of increased mortality may well outweigh the advantage of faster growth, and increased survival and recruitment may not be the result.
Alternative Hypotheses

- Total larval production Ho: Trophic conditions support such high total larval production that negative effects of unfavorable dynamics are overridden.

- Retention Ho: Physical dynamics and circulation facilitate retention of larvae within the area influenced by the riverine discharge.

- Downstream Ho: Specific dynamics of the farfield area of the discharge do favor enhanced recruitment, i.e., slightly enhanced feeding conditions subtly increase growth and diminished predator field allows lower mortality.
Conclusions

• Circumstantial evidence worldwide that river discharges enhance fishery production in coastal shelf waters, and that is so for the Mississippi River into the Gulf of Mexico.

• While the enhancing effect of riverine input seems clear, the exact mechanisms by which it occurs is not, but it is by affecting recruitment that fishery production can be influenced the most.

• Coastal shelf waters receiving riverine input are a rich environment where both physical and biological dynamics may favor processes that regulate recruitment.
Fishery production = (G + R) – (F + M)

where:
G = growth,
R = recruitment,
F = fishing mortality and
M = natural mortality
Short food chain hypothesis:

Fish larvae in the vicinity of the riverine discharge in general, and the frontal region in particular, (1) take advantage of abundant food and consume a superior diet, (2) grow faster and (3) have shorter larval stage duration and experience better survival.
Summary of Results Relevant to Short Food Chain Hypothesis:

(1) Some species of larvae are conferred a trophic advantage.

(1) Some species grow faster.

(1) Mortality rates appear to be higher.

So, validity of the hypothesis depends upon relative magnitude of growth and mortality.
Alternative Hypotheses

1. Total larval production Ho: Trophic conditions support such high total larvae production that negative effects of unfavorable dynamics are overridden.

2. Retention Ho: Physical dynamics and circulation facilitate retention of larvae within the area influenced by the riverine discharge.

3. Downstream Ho: Specific dynamics of the farfield area of the discharge do favor enhanced recruitment, i.e., slightly enhanced feeding conditions subtly increase growth and diminished predator field allows lower mortality.