Recovery of the Bristol Bay Stock of Red King Crabs Under a Rebuilding Plan

Gordon H. Kruse
University of Alaska Fairbanks
School of Fisheries and Ocean Sciences, Juneau Center
Juneau, Alaska, U.S.A.

Jie Zheng
Alaska Department of Fish and Game
Division of Commercial Fisheries
Juneau, Alaska, U.S.A.
Outline of Presentation

- Red king crab biology and life history
- Fishery overview
- Stock and fishery management history
- Ingredients of stock rebuilding plan
- Stock response after implementation
- Conclusions
Red King Crab Biology

- Anomurans (not true crabs)
- Mating
 - Tied to female annual molting
 - ♂’s must be present at fertilization
- Females carry up to 500,000 embryos ~11 mo.

Photo: T. Shirley, UAF

[Links to www.afsc.noaa.gov and www.fakr.noaa.gov]
Early Life History of Red King Crab

- Embryos hatch in February – March off Kodiak Island and April to June in Bristol Bay
- Larvae pass through four zoeal stages
- Then they transform to glaucothoe while searching for suitable nursery habitat.
- With the next molt, they become benthic juveniles.
Red King Life History

- Distributed from intertidal zone to >200 m from British Columbia to Hokkaido, Japan
- Young-of-the-year live <50 m in high-relief habitat
- Juveniles form aggregations (pods)
- Young molt several times per year through age 3
- After age 3, molting is annual, until maturity
- After maturity, “skip molting” occurs in males with increasing probability
- Longevity > 20 years

Photo: L. Barr, Auke Bay, AK

www.afsc.noaa.gov
Red King Crab Fishery

http://rcrawford79.files.wordpress.com

www.accentalaska.com
Fishery Management through 1995

- **3-S (Size-Sex-Season) Management**
 - **Sex** – Only males are legal for harvest
 - **Size** – Males ≥165 mm CW (≥ 135 mm CL). Legal size defined as one molt increment above size of maturity
 - **Season** – no fishing during spring molting & mating periods. Current opening Oct. 15th

- Pot limits

- **Target harvest rate:**
 - **Pre-1990**: 20-60% of legal males, depending on population size, pre-recruit abundance and relative abundance of post-recruits
 - **Post-1990**: 20% of mature males, with maximum 60% legal male harvest rate
Historical Abundance & Landings

- Peak Catch: 59,000 mt or 130 million lbs
Concerns in mid 1990s

Conservation Concerns
- Stock declines
- Harvest rates – too high?
- Too much fishing effort
- Handling mortality
- Bycatch in other fisheries
- Trawling/dredging effects on crab habitats

Socio-economic Concerns
- High variability in catches
- Loss of employment and default on bank loans
- High rates of crew injury and mortality
Development of Rebuilding Plan

Length-based Analysis

Mgmt. Strategy Evaluation:
1. Long-term harvest strategy
2. Stock rebuilding strategy

Handling Mortality Studies

Analysis of Crab Bycatch from Observer Data

Area Closures and Crab Bycatch Caps in Trawl Fishery

Crab TACs
Stock-recruit & Rebuilding Target

![Graph showing effective spawning biomass (1000 t) vs. total recruits (millions). The graph includes a general Ricker curve and an autocorrelated Ricker curve. The x-axis represents effective spawning biomass, ranging from 0 to 90 and the y-axis represents total recruits, ranging from 0 to 120. The rebuilding target is marked at 25,000 mt.]
Bristol Bay RKC Harvest Strategy

Effective Spawning Biomass (mt) vs. Mature Male Harvest Rate (%)

Threshold 6,600 mt ESB

Other thresholds:
- 8.4 million females >89 mm CL
- Minimum TAC of 1,814 mt

Rebuilding Target 25,000 mt
Trawl Bycatch Controls and Area Closures

- **Zone 1** – Prohibited species caps (PSCs) of 35,000, 100,000, or 200,000 red king crab depending on crab abundance
- **Closure of Red King Crab Savings Area** protects adult male red king crab
Nearshore Trawl Closure Area

- **Nearshore Bristol Bay Closure** – Protects juvenile red king crab habitat
Historical Abundance & Landings

Year

Legal Abundance (millions)

Foreign Harvest
Domestic Harvest
Legal Abundance

Landings (mt)
0 10 20 30 40 50 60
0 5 10 15 20 25 30
0 5 10 15 20 25 30

0 10 20 30 40 50
0 5 10 15 20 25 30
0 5 10 15 20 25 30
Some Stock Improvement since 1990s

[Graph showing the number of recruits to the model by year for males and females.]
Historical Abundance & Landings

Mature Male or Female
Abundance (millions)

Year

Effective Spawning Biomass
(Thousands mt)

Mature Males
Mature Females
Effective Spawning Biomass

Rebuilding Target
25,000 mt
Crab Rationalization Program (2002)

- Allocates BSAI crab resources among harvesters, processors, and coastal communities.
- Addresses problems with previous derby fishery by reducing bycatch and increasing vessel safety.

Created entitlements:

Quota share (QS) – a long-term privilege to harvest a percentage of the crab harvest.

Individual fishing quota (IFQ) – QS x TAC.

Processor Quota Share (PQS) – long-term privilege to receive a percentage of crab harvest in a fishery.

Individual Processor Quota (IPQ) – PQS x TAC.
Benefits of Rebuilding Plan

- Length-based analysis provides annual estimates of abundance
- Reduced harvest rates and threshold provide for more conservative harvest strategy
- Bycatch caps and area closures constrain crab bycatch and habitat impacts
- Decline from 302 vessels in 1991 to 81 vessels in 2006 reduced overcapitalization
- Stock recovery seems attributable to ecosystem-based management approach including reduced fishing mortality, lower bycatch, habitat protection, and reduced fishing effort.
Questions?