Assessment of the Japanese sardine (*Sardinops melanostictus*) stock in the northwestern Pacific for Japanese management system

Hiroshi NISHIDA, Masayuki NOTO, Atsushi KAWABATA and Chikako WATANABE

National Research Institute of Fisheries Science
Yokohama, Japan

Sardinops melanostictus

(1) Current stock status
(2) ABC(acceptable biological catch) setting
(3) Suggestion for the stock recovery measure that promote sustainable fishery
Stock abundance decreased from ca.14-19 million ton during 1980’s to less than 1 million ton in late 1990’s.
Egg abundance survey

Vertical towing from 150m depth (or near bottom) to the sea surface
Long Norpac net (0.335mm mesh size and 45cm mouth diameter).

Egg abundance (October-September, 1978-2006)
From the historical perspective, the current stock status would not be in the conditions for rapid stock recovery.

SSB and diversity in age composition is also the important step for sustainable fishery.
Minimum spawning stock biomass at which good recruitments were produced in the past are defined as the limit biomass (Blimit).

Blimit for Japanese sardine (low stock level) = SSB1996(220000ton)

ABC for Japanese sardine = Catch limit corresponding to the fishing mortality preventing the total biomass from decreasing, and rebuilding the spawning biomass
Surface-midwater Trawl Survey

Juvenile
Hokuho-maru
Survey period: May-Jun. 1996-
3 stations during a night
Sub-surface trawl
Net opening: 25 x 25 m
Mesh aperture (cod end): 10 mm
Towing duration: 30 min.
Towing speed: 3.5 knot

Wintering young
R/V Shunyo-maru
Survey period: Jan-Feb. 2002-
3 stations during a day
Surface-midwater trawl
Net opening: 40 x 40 m
Mesh aperture (cod end): 17 mm
Towing duration: 60 min.
Towing speed: 5 knot
Geographical distribution and abundance of sardine juveniles
Circle size = No./net haul

1996

1997

1998

1999

2000

2001

2002

2003
Juvenile abundance index (standardized juvenile catch numbers by May SST in KOTZ and tow numbers) fairly agreed with recruitment numbers estimated from cohort analysis.
High density of young was associated to intrusion from Kuroshio-extension.

Surface-midwater trawl survey data is essential for the stock assessment in the years of poor recruitment.
(3) Suggestion for the stock recovery measure that promote sustainable fishery

Preservation of habitat (spawning area)

Tosa Bay is one of the spawning areas for Japanese sardine and plays an important role as protected area, because large scale purse seine fisheries are prohibited in Tosa Bay. → Ishida et al. S4-4190

The reduction in spawning ground in time and space in recent years also indicates the reduction of biological diversity of sardine stock.
Egg abundance >20×10^{12} around Boso region is needed for the favorable recruitment (Kuroda 2004)

Spawning Biomass + Spawning Location (Diversity) \rightarrow stock rebuilding
Summary

The stock size of Japanese sardine in the northwestern Pacific has shown a continuous decrease from 1987 to 2003 and the stock biomass estimate for 2003 was about 130 thousand tons.

From the historical perspective, the current stock status would not be in the conditions for rapid stock recovery.

The acceptable biological catch (ABC), that is the biological criterion for the TAC, is set to rebuild the SSB to the level of minimum SSB at which good recruitments were produced in the past.

Preserving habitat and biodiversity is also the important step for sustainable fishery.