Long-term variation of plankton community of Kuroshio warm current area, the spawning ground of Japanese sardine

Hiroya Sugisaki, Kiyotaka Hidaka, Tadafumi Ichikawa, Yuuichi Hirota, Yutaka Hiroe, Mikiko Kuriyama, Toru Udagawa, and Kaoru Nakata

(National Research Institute of Fisheries Science, Fisheries Research Agency, Japan)
Importance of Kuroshio area for pelagic fish production

The Kuroshio warm current

Kuroshio is very important area for early life stage of sardine and anchovy

Monitoring line off cape Omaezaki (138°E: O-line) since 1999.

Spawning ground of sardine and saury

Kuroshio paradox (？)

Nursery and feeding ground of pelagic fish

Habitat for early life stages of abundant fishery important pelagic fishes

Known as low productive area

Long term variation of stock size of the pelagic fishes has been observed, and it implies that the variation is relating to climate change.

Field monitoring to clarify the mechanism of abundant pelagic fish production is conducted.
Typical patterns of the meander of Kuroshio current

Large meander period

South most latitude of Kuroshio

: large meander period
Time series of nutrient condition on the routine Kuroshio monitoring line, O-line 138°E
(NO$_2$+NO$_3$ : // mol/l)

Corresponding to deep mixing layer during winter, high nutrient concentration has been observed.
Time series variation of satellite data of Chlorophyll a concentration at Kuroshio routine monitoring line (O-line; 138° E) calibrated by truth data.

High primary production during late winter to early spring is important for biological production in Kuroshio ecosystem.

→ High chl season correspond to the spawning season of sardine and saury in this area.
Annual variation of Composition of copepods of Kuroshio axis during spring

Annual variation of Composition of copepods of north of Kuroshio axis (inshore side) during spring

Variation of Meander pattern of Kuroshio may cause to change the plankton ecosystem qualitatively and quantitatively.
Annual and seasonal variations of biomass of phyto and zooplankton in Tosa bay, the spawning ground of Japanese sardine of Kuroshio area

Chl a concentration
Small (body width<0.1mm) copepods
Large (body width>0.3mm) copepods

Peak shifts earlier
Spawning season of Japanese sardine

Spring biomass has become low
Summer biomass has become high
Seasonal variation has become obscure??
Heterotrophic nannoflagellates ("HNF")
Phytoplankton (diatoms etc.)
Meso-zooplankton (copepods, appendicularia)
Larval and juvenile pelagic fish

Larval and juvenile
pelagic fish

Microzooplankton (ciliates etc.)

Meso-zooplankton
(copepods, appendicularia)

Low trophic level ecosystem

Large particle food chain

Small particle food chain

Prey for larval pelagic fish

phytoplankton (diatoms etc.)

Heterotrophic nannoflagellates ("HNF")

Picophytoplankton (coccoliths etc.)

bacteria
For analyzing the existence of small particle food web; Video Plankton Recorder --- to observe *in situ* suspended matters

Towing system with TV camera and CTD
Vertical distribution of Plankton and suspension observed by VPR

Figures collected in Tosa bay at 0-50m depth

These figures implies that Suspension can be utilized directly by zooplankton community.
Oceanic food web structure using by stable isotope methods

Different paths of biological transportation of zooplankton food web has been suggested by stable isotope.
Bench-top Video Plankton Sampler (B-VPR)

There are large accumulated plankton samples collected around Japan for long times. But most of them are not analyzed yet because it needs lots of time and effort.

→ Quick and automatic analysis are needed.

B-VPR → analysis on abundance and size composition of copepods

Resolution: 0.01 mm/pixel (Prosome length > 0.4 mm)

Ability: 15-30 min / bottle

Flow cell and Video camera

Recorded by VPR

Automatic measurement of body size

At present, ca. 2000 formalin preserved bottles collected since 1960 has been analyzed.
Result of annual variation of winter biomass of copepods in Kuroshio area using B-VPR

- North of Kuroshio axis
- Area 3
- Area 4+5
- Area 7

- South of Kuroshio axis

High biomass decade
Low biomass decade
High biomass decade
After long period of bad recruitment of sardine, the recruitment status becomes better since 2008 — the good recruitment regime is beginning??
Conclusions

- Recently, peak season of copepod bloom has tended to become earlier, and seasonal variation of large copepod biomass has become unclear.
- The timing of change of ecosystem may be related to not only the climate change but the change of meander pattern of Kuroshio.
- The biological production by small phytoplankton may be important for larval fish production via appendicularia.
- Long term continuous monitoring on plankton community is very important to analyze the mechanisms of the stock variation of fishery important species (e.g. sardine, anchovy). Bench-top Video Plankton Recorder system will become useful gear to analyze large quantity of preserved plankton samples.